
A Computational Model on the Emergence of Vowel Transition 
Perception 

Ching-Pong Au† and Christophe Coupé ‡ 

† Language Engineering Laboratory, City University of Hong Kong, Hong Kong SAR, China 

‡ Laboratoire Dynamique du Langage, Lyon, France 

E-mail: bong.au@plink.cityu.edu.hk, ccoupe@ens-lyon.fr 

ABSTRACT 

The speech generalizing abilities of infants in their native 
language improve as they grow up throughout their first 
half-year [1].  The emergence of this ability is a 
self-organizing process because the access of word 
meaning of the young infants is still very limited.  Guenther 
and Gjaja simulated this phenomenon successfully by using 
self-organizing maps [2].  In their models, however, only 
static features are considered as inputs, and internal 
temporal relationships within speech sounds are not 
considered.  In the present study, we simulate the same 
phenomenon by modifying a word recognition model that 
takes temporal features into account [3,4].  A new 
self-organizing algorithm, relying on the competition 
among dendrites or neurons, is used in our model. 

1. INTRODUCTION 

Experiments show that two acoustic sounds are perceived 
more similar if they are acoustically closer to their 
prototype.  Kuhl named this phenomenon, “perceptual 
magnet effect” (PME) because the prototype of sounds 
functions like a magnet for the other members in the 
category and assimilates neighboring stimuli, effectively 
pulling them toward the prototype in the perceptual space. 
[5].  The formation of this effect has been found in very 
young infants whose abilities in generalizing the speech in 
their native language improve as they grow up throughout 
their first half-year [1].  Since infants’ access to the 
meaning of speech is still very limited around one year old, 
the emergence of the magnet effect is likely to be a 
self-organizing process.  Guenther and Gjaja (G&G) 
hypothesized that the effect emerges because of the 
non-uniformity of the auditory map due to the auditory 
experience of the native language, and simulated this effect 
successfully by using self-organizing maps [2].  However, 
this pioneering model simulating PME abstracts away two 
important characteristics of human speech:  (1) The 
representation of the inputs are not very likely to be 
realistic because a few single neurons are assumed to 
represent the formant frequencies of the speech; (2) 
Temporal relationships within the speech sound are ignored 
in the model.  In this paper, we adapt G&G’s hypothesis and 
intend to improve the two aspects that their model lacks. 

In a recent model [6], instead of using the former kind of 
idealistic representation of formants, a number of neurons 
representing signals from different frequencies and ordered 
tonotopically are used as the input representation in 
agreement with the fact that tonotopical representation 
were found in various auditory nuclei and auditory cortex.  
In the model, selection of neurons due to the input signals is 
used as the development algorithm of the model, called 
‘survive-and-spread’ algorithm:  only neurons get enough 
activation can survive; and then, if further activated, their 
dendritic connections spread to the nearby input units.  The 
simulation shows the emergence of PME due to different 
linguistic environment [6].  The idea is based on the fact 
that a large number of neurons die during the early brain 
development (see review in [7]) and the philosophical 
account that the neuronal death is not just random, but a 
strategy of development [8].  In the present study, 
tonotopical representation of inputs and a similar 
selectionistic development algorithm are used. 

In G&G’s model, although using formant values to 
represent single vowels may be sufficient, speech sounds 
with internal temporal relationships such as diphthongs 
cannot be satisfactorily represented.  In the present study, 
we modify a biologically plausible word recognition model 
recently proposed by Hopfield and Brody (H&B), which 
takes temporal features into account, to fit our purpose 
[3,4]. 

Our model here was tested with artificial formants.  The 
mechanism of the model will be introduced in section 2 and 
its simulation results will be reported in section 3.  Finally, 
conclusions and future development will be discussed. 

2. THE MODEL 

The model has 2 layers: layer A (input layer) and B (output 
layer).  In layer A, there are three distinct bi-dimensional 
maps of inputs (The number of the input maps is not 
restricted to 3, but this is the minimum required number to 
show the convergence of the synchronized firing patterns).  
These 3 maps can be conceptually located at any level of 
the auditory pathway.  Each of these maps has a fixed 
number of neuronal units organized in a two dimensional 
manner.  Neuronal units are organized tonotopically from 
the lowest to the highest frequency in one dimension while 
the neuronal units are organized from the lowest to the 
highest decay rate in another (fig.1). 



Layer B contains a varying number of neurons.  Each 
neuron has 3 branches and each of these branches has a 
varying number of dendrites that collects signals from the 
units in layer A. 

Fig.1  Structure of our model 

The tonotopical organization of the frequency in the 
auditory nuclei and auditory cortex has been well attested.  
However, the existence of the ordering of the decay rate is 
relatively hypothetical.  The assumption is made primarily 
because of the functional requirement of the system: since 
human has the ability of generalizing the length of speech, 
there must be some way to represent the continuous 
relationship of time in the auditory pathway.  Relying on a 
bi-dimensional tonotopical organization is reasonable 
because bi-dimensionally organized cortex can be found in 
other animals such as mustached bat [9].  However, claims 
on the reality of the network structure cannot be firmly 
defended since fine details about the organization of many 
parts of the human auditory pathway are still unknown. 

The learning algorithm (or development algorithm, a term 
that may be more appropriate) includes a few steps for the 
iteration, as detailed below: 

1. A large number of developing neurons are added to 
layer B with the 3 branches attached to the 3 input 
maps accordingly (See fig. 1).  Each branch initially 
attaches to five input units (in a cross shape), but 
locates randomly on the map.   

2. A number of signals simulating artificial formants are 
fed into the system.  Neurons with sufficient activation 
from the input are kept in the layer while those are not 
activated frequently die immediately and are taken 
away from the layer.  A ‘survival’ index is used to 
measure how often the neuron is activated.  Whenever 
the neurons fire, the index will be increased by a small 
value.   If the value of this index is over a threshold by 
the end of this iteration, the neuron can survive. 

3. At the same time, the surviving neurons from the 
previous iterations spread their dendrites further by 
adding sub-branches to the four sides of the existing 
sub-branches if the ‘spreading’ index of the 
sub-branches is higher than a threshold.  Those 
sub-branches play a role in synchronizing and firing 
the neuron increase their ‘spreading’ index by a value, 
and at the same time, the ‘spreading’ index of other 
sub-branches in the same neuron is increased by a 
smaller value.  However, each unit in all the input maps 

can allow only a limited number of sub-branches to 
connect to.  Once the units have reached the limit, even 
if a sub-branch nearby is activated, no new sub-branch 
can grow into this fully occupied input unit. 

 

The simulation can go on until the system becomes stable 
(i.e. most of the popular input sites are being blocked).  At 
this time, no significant change in the responses can be 
observed.  

Since we consider the temporal relationship features within 
the speech patterns, the recalling mechanism is largely 
based on the concept of the H&B model.  The model relies 
on the transient synchronization of integrate-and-fire 
spiking neurons with convergent firing rates.  There are 
three layers in their model.  The first layer is a tonotopically 
organized layer in which there are three types of neurons 
responding to the onsets, peaks and offsets of the incoming 
signals; the second layer contains both excitatory (α cells) 
and inhibitory (β cells) neurons.  The neuron outputs of the 
first layer are linked to the neurons in the second layer.  The 
α and β neurons in the second layer are interconnected and 
some of them are connected to the third layer, i.e. the output 
layer.   

Fig. 2  Simplification of the model  

In this model, the response of each neuron is a pattern of 
decreasing firing rate (see signals, S1 and S2 in fig. 2).  In 
the neurons, with a large number of incoming links, all the 
signals received are summed up.  Only those with similar 
frequencies and phases can be added up to a larger value of 
amplitude as shown in the upper panel (S1+S2) of fig. 2.  If a 
large number of inputs of a neuron have the same 
frequencies and phases, the neuron fires if the amplitude is 
over a certain threshold. 

In the model we develop here, we introduce a learning 
algorithm that requires a demanding computation power.  
Therefore, we simplify the recalling system to let us see the 
interesting results obtained by using this innovative 
learning algorithm, as our interest is not the detailed 
behavior in the neurons.  The simplification includes the 
followings:  (1) the patterns for pulses with decreasing 
firing rate as in the upper panel of fig 2 are only represented 
by a straight lines as shown in the lower panel.  (2) The 
second layer of the H&B model is not overtly implemented 
in our model.  We assume that patterns can be synchronized 
if the frequencies of the inputs alone match at a certain time.  
The phases are assumed to be then always synchronized by 
the un-implemented α and β neurons and are being ignored 
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in our model.  (3) To keep our model simple and easy to be 
analyzed, all the neurons in the output layers have only 3 
input links (the 3 branches) from the input layer as shown in 
fig. 1.  Neurons in layer B can be activated only when all 
three branches have at least one sub-branch containing a 
suitable pattern such that the three patterns can be 
synchronized successfully.  Recall of the whole system is 
simply feeding in an input signal to layer A and then 
observing the responses of all the neurons in layer B. 

Fig. 3   An illustration of the mechanism of neuron firing 

With the above simplification, we end up with a simple 
recall system that can capture the temporal properties in 
speech.  The recall mechanism is illustrated with an 
example in fig. 3.  Assuming there is one neuron which 
sub-branches of each branch connect to the 3 input maps in 
cross shapes (initially, the connections are in cross shapes, 
but when the algorithm goes on, it can be spread and form 
some other shapes) as shown in fig. 3.  Here comes a 
pattern detected from a formant of a diphthong (The 4 
squares in the upper left graph).  The squares activate the 
input neurons in 4 different characteristic frequencies at 4 
different time.  At time t1, only one sub-branch in map 3 is 
activated.  No sub-branch is activated at time t2.  Then, at 
time, t3, one sub-branch in map 2 is being active, and 
finally 1 sub-branch in map 1 and 3 sub-branches in map 2 
are simultaneously activated (fig. 3, the upper right graph).  
Consequently, having the 3 signals (3 straight lines, one 
from each map) been synchronized (at the intersection 
point), this neuron fires (fig. 3, the lower graph). 

Based on the system described above, PME can be shown.  
The results and the evaluation of the system performance 
will be reported in the next section.  

3. RESULTS 

In the simulations, an artificial linguistic environment is 
provided to the system in the learning stage (development 
stage).  Formants of an artificial vowel transition with 
variations in length, starting and ending frequencies are 
used as the linguistic environment.  Since only onset 
detectors are simulated, only the black squares of the 
patterns in fig. 4 can be detected through the input units.   

Fig. 4  Testing Stimuli from two different dimensions 
 

Two sets of testing patterns that vary in two different 
dimensions are used to test the system in different stages of 
training.  The first testing set contains formants with 
variation of average frequency but constant slope fixed at 
the mean value in the learning environment (fig. 4a).  The 
second set varies in formant slopes realized by fixing the 
starting frequency but varying the ending frequency (fig. 
4b). 

Fig. 5  Results of two runs with testing stimuli in fig. 4a. 

 
By feeding in the 12 signals in fig. 4a, firing patterns of the 
neurons in layer B are obtained.  The number of neurons 
having different responses to two neighboring signals is 
counted and plotted in fig. 5 (comparison between signal 00 
and 01, between 01 and 02, and so on).  Different ‘infants’ 
show different developmental pathway.  Fig. 5a and 5b are 
the ontogenetic changes for two ‘infants’ (two trials) of the 
model.  Fig. 5aiii and 5biii (stabilized stage) shows that the 
closer the signals to the mean of the training sets (around 
signal 07), the higher the similarity of the two neighboring 
patterns.  This explains the V-shape of the curves. 
 
The general patterns fit the phenomenon of PME, although 
some parts are not very smooth.  The wrinkle portions can 
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have two possible explanations.  An optimistic explanation 
may be that the model can realistically show the real fact 
that each individual has such a non-smooth response and 
the wrinkles were hidden by averaging the responses of a 
number of subjects in the empirical experiments.  Another 
possibility may be due to the unrealistic characteristics of 
our model.  The population of neurons is limited by the 
present technology.  Only a limited number of neurons are 
allowed in the model.  The curves may become smoother if 
a larger population can be considered in the model.  Further 
investigation in the future is necessary.  

Fig. 6  Result with testing stimuli in fig. 4b. (480 iterations) 

 
Stimuli in fig. 4b are used to test the trained system and the 
result is shown in fig. 6.  Left hand side shows the 
comparison of the signals with greater slope.  PME can be 
shown partly on the left hand side.  Right hand side is not 
consistent with the PME.  The comparisons of the 
responses drop/raise sharply at the right hand side of the 
pattern because signals with little or no transition cannot be 
detected through the onset detectors.  The weaknesses 
should be able to be improved if other detectors (peak and 
offset) are also implemented in future. 

5. CONCLUSIONS 

In this study, we built a model that try to capture the internal 
temporal information of signals so that the emergence of 
the PME on the vowel transition can be realized.  The 
model can preliminarily show the PME quite well for the 
transitions but not for steady vowels.  Detecting nothing 
when the signal is a steady vowel seems very odd as a 
human behavior.  However, this is, in certain extent, 
consistent to the experimental results suggested by some 
early perceptual studies that vowel identification is more 
accurate for vowels cued only by formant transitions than 
for the formants of the steady portions heard in isolation 
[10].   

We have also tried to apply the model on real speech data.  
Some specialized settings are added to the present model in 
order to make learning of real speech possible.  The main 
challenge is the computational resources required to run 
models with a large number of highly connected neurons 
and correctly capture the diversity of real signals.  Our first 
attempts with a small number of connections have provided 
preliminary but encouraging results: with either real speech 
or artificial noisy vowels organized in clusters as input 

signals, some of the clusters of sounds show the emergence 
of PME.  In order to deal with the computation burden due 
to the large number of connections in our model, we are 
currently developing some efficient computing algorithms 
by modifying some algorithms used in image processing.  
We hope these faster algorithms can help in shortening the 
computation time so that we can see some interesting 
results in the future models.  
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